Pages

Tuesday, August 11, 2009

A new book on the history of scientific imagery explores the promises and pitfalls of the easily-manipulated medium.

Faith and the Scientific Image

Seedmagazine/ Review / by Veronique Greenwood / May 30, 2009

When I snapped my first picture under the electron microscope, I was breathless at the detail of the image: I could see the long, lovely arch of the interior of a seminiferous tubule and a great mass of flagella whipping out into the lumen. I turned to the grad student who was teaching me the technique, agape at what I’d been able to capture, and he smiled. “I have my first micrograph framed and hanging on my wall,” he said. To this day I keep my micrographs on my desk at the Seed offices, where they stand ready to deliver inspiration.

Imaging is one of the foundations of modern science. It can also be one of its most exciting elements for young scientists—nowhere is the pursuit of truth and the revelation of the invisible as well embodied as in the scientific image. Whether it’s the fluorescence of a protein, the X-ray shadow of a crystal, or the tracks of a radioactive nucleus, seeing raw data can be as thrilling as making a discovery. In the midst of these riches, it’s easy to forget that science underwent a dramatic metamorphosis when photography became possible.

Andrew Davidhazy, Tape-dispenser as seen in colour when placed between polarizers, 2005

The Exposures Series’ Photography and Science (Reaktion Books, May 2009, Buy) is a meaty, detailed treatise on the history of scientific photography, as well as the science of photography. The book, written by Kelley Wilder, a senior research fellow in the Department of Imaging and Communication Design at the UK’s De Montfort University, is split into four sections—observation, experimentation, building archives, and art and the scientific photograph. Each explores how the development of light-sensitive emulsions and their descendants, including micrographs and radiograms, reinvented the way science was done. When cameras and emulsions first became more widely available in the mid-1800s, photography seemed to promise true scientific objectivity for the first time, helping to catalyze the shift away from theory towards observation. But how truly reliable was it? “Within the little-told tale of sensitivity data and characteristic curves,” writes Wilder, “exists a struggle over faith in the photographic image as an experimental instrument and, eventually, as evidence.”  This is a tale about our reliance on imaging technology for the truth, and how much has stood between its reality and its promise.

Every section of Photography and Science is loaded with curious revelations on the tribulations of scientific photography. When Venus crossed in front of the sun in 1874, Wilder recounts, massive expeditions were dispatched around the world to observe and photograph the planet. Every effort was made to standardize the teams’ emulsions, but the results were still so varied in sensitivity that Venus sometimes appeared to be square with round corners, and its edges in most cases were too soft for good measurements of diameter. As a replacement for a naturalist’s guidebooks or for anatomical drawings, photography also yielded mixed results, but for different reasons: In its ability to record everything, photography has no way of emphasizing what information is important or characteristic in a specimen or malady. A photograph of a person with elephantiasis, for example, cannot capture the “undifferentiated tissue abnormalities that occurred between one specimen and another,” Wilder writes. Thus for doctors and naturalists, a photograph has often proven much less useful than a drawing.

http://seedmagazine.com/content/article/photography_and_science/

No comments: