Article from IEEE Spectrum
Quadrotors are famous for being able to pull all sorts of crazy stunts, but inevitably, somewhere in the background of the amazing video footage of said crazy stunts you'll notice the baleful red glow of a Vicon motion tracking system. Now, we don't want to call this cheating or anything, but we're certainly looking forward to the day when quadrotors can do this outside of a lab, and the sFly project is helping to make this happen.
What makes the sFly project, led by ETH Zurich's Autonomous Systems Lab, different is that the sFly quadrotors don't rely on motion capture systems. They also don't rely on GPS, remote control, radio beacons, laser rangefinders, frantically waving undergrads, or anything else. The only thing that sFly has to go on is an IMU and an onboard camera (and an integrated computer), but using just those systems (and a "very efficient onboard inertial-aided visual simultaneous localization and mapping algorithm"), sFly is capable of navigating all by itself. And if you have a fleet of sFly quadrotors, you can use them to make cooperative 3D maps of the environment:
Each quadrotor is completely autonomous, but they're also equipped with two extra cameras that stream stereo imagery back to a central computer over GSM or Wi-Fi that takes the data from several quadrotors and combines it into an overall 3D model of the environment as a whole. Then, the computer can guide each robot to an optimal surveillance site. The idea here is that you'd be able to rapidly deploy an sFly system with a swarm autonomous quadrotors in a disaster area or somewhere else without any infrastructure (or even a GPS signal) and still be able to take advantage of some clever autonomous aerial mapping.
(please note: video is also available on 3D)
Article from IEEE Spectrum
No comments:
Post a Comment